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People have studied symmetrical polyhedra for thousands of years but there are still things we can discover about them.  The nine 
regular polyhedra are very well understood.   When we relax the conditions that define them, many more possibilities appear.  
Regular-faced vertex-transitive (uniform) ones have been completely enumerated.  Face-transitive ones have been studied but have not 
been enumerated.  There are numerous infinite families of those. 
 
There seems to be very little literature on edge-transitive (or "isotoxal") polyhedra, perhaps due to a misconception that they must also 
be face-transitive or vertex-transitive.  This conclusion may be due to an implicit assumption that polyhedra must be topologically 
spherical (and thus satisfy Euler's formula), or that faces cannot pass through the center of symmetry, or perhaps simply that there 
cannot be star-shaped vertices.  Yet the set of uniform polyhedra has been well known and accepted for decades and many of them 
violate all of these restrictions.  As will be apparent below, accepting a definition that is sufficient to include the well-accepted 
uniform polyhedra results in a much richer set of isotoxal polyhedra, including some that appear to be new. 
 
 
Many writers have treated polyhedra as solids and many more have used ambiguous wording to describe them.  The idea of polyhedra 
as solids dates back to antiquity but makes the Kepler-Poinsot objects irregular and eliminates all the non-convex uniform polyhedra 
as well.  To retain those in their accepted categories it is necessary to consider polyhedra to be surfaces possibly with interpenetrating 
faces.  Any enclosed region of space is then not part of the object, just as a Klein Bottle, for example, has neither interior nor exterior. 
 
Other writers take a very generous view, treating polyhedra as almost arbitrary collections of closed cycles of segments.  Such 
"polypolygons" are interesting but it is useful to consider them to be a separate category of mathematical objects. 
 
The current work is a complete enumeration of edge-transitive polyhedra in Euclidean 3-space using a common and intuitive 
definition of "polyhedron", one that includes all of the commonly accepted uniform ones.  Briefly, a polyhedron is a finite, connected, 
closed surface, with no coincident elements (vertices, edge, or faces), decomposable into a finite set of faces.  A face is a planar 
immersion of a disk whose interior is path-connected and whose boundary is a polygon having a finite number of sides and any 
rotation number1.  Those sides meet in pairs at (linear) edges, where the normal vector to the surface changes.  Each of these is 
incident with exactly two faces and terminates at two vertices, which are shared with other edges.  Vertices are distinct and have 
valence at least 3.  The faces incident with a vertex form a single circuit.  This latter condition is not required of compounds.  In 
general, one must consider even more properties when defining what to accept as a polyhedron.  For this work, the constraints 
imposed by edge-transitivity eliminate many unconventional characteristics. 
 
 
We find 47 individual polyhedra and 10 compounds that are edge-transitive, of which 11 are neither vertex-transitive nor face-
transitive.  They are listed below in Tables 8.1 through 8.4. 
 
 

                                                
1 Rotation number is often inaccurately referred to as "winding number".  Branko Grünbaum and G. C. Shephard [GS90] provided a 
careful treatment of the difference. 
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1.  Initial Findings 
 
Transitivity of the edges under the symmetry group of a polyhedron constrains the vertices to be in at most two symmetry classes. 
 
Suppose that all the vertices are in one class.  They must then be cospherical.  The equality of the lengths of the edges implies that the 
face angles are equal and that the faces are regular.  Therefore any such polyhedron must be uniform and at least quasi-regular.  These 
polyhedra are well known and it is straightforward to determine the transitivity of their edges.  It turns out that all of the uniform 
polyhedra for which the vertices lie on rotation axes, and only those, are isotoxal.  They are listed in Table 8.3. 
 
 
Suppose instead that the vertices are in two symmetry classes, A and B.  Each edge must be incident with one vertex of each class. 
 
For a given vertex v of Class A, consider the symmetry operations that carry any one of its incident edges to another.  v must be a 
fixed point of each of those operations.  The only possibilities are a rotation about the radial containing v and a reflection in a plane 
through v.  If there is no such rotation, there can be only one reflection.  An edge incident with v will have only one other edge in its 
symmetry orbit.  Since all vertices must be least trivalent, a rotation is needed to produce orbits that are of sufficiently large order. 
 
Therefore, v must lie on an axis of rotation of the polyhedron's symmetry group.  All other vertices of Class A must be similarly 
situated and at a common radius from the center of symmetry.  Similarly, the vertices of Class B must also lie on rotation axes and at a 
common radius.  If either of these axes is 2-fold, there must also be a reflection through that axis so that the vertices there have 
valence greater than 2. 
 
These constraints will drive the remainder of our enumeration.  We proceed by first classifying the types of edges (in terms of 
symmetry group elements) and the types of faces that a vertex-intransitive isotoxal polyhedron can have.  We follow this with a 
general procedure for identifying faces of a vertex-intransitive polyhedron having a given symmetry group.  Then, for each rotational 
symmetry group, we identify possible faces that are bounded by symmetrical sets of such edges and identify polyhedra by combining 
compatible sets of faces in ways that preserve edge-transitivity and that close the surface. 
 
The 3-axes and 2-axes of Tetrahedral symmetry are exactly the same as the 3-axes and 4-axes of Octahedral symmetry.  For simplicity 
we will consider Tetrahedral symmetry in conjunction with Octahedral. 
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2.  Edge Types 
 
We split each rotation axis into two rays and identify the latter separately.  This allows us to consider only positive radii, which 
simplifies the process of identifying faces.  We refer to points on k-fold rotation axes as "k-sites" (or simply "sites").  There is no 
operation in the Tetrahedral rotation group that reverses the direction of the 3-fold axes, although there is in Ti, the Tetrahedral group 
with inversion.  As a result, it is often the case that the two rays of each such axis can be distinguished and there are two orbits of 3-
sites.  Points in the second orbit will be referred to as 3'-sites. 
 
Let p and q be the order of rotation of the axes on which Class A and Class B vertices are located, respectively.  We always assign 
classes A and B so that p >= q.  Symmetrically equivalent edges must extend from a point on a p-fold ray to a point on a q-fold ray.  
The endpoints cannot be on the same ray, in case p = q, otherwise all vertices of one Class would coincide and the faces would vanish.  
There is a finite set of angle measures between rotation rays, which we can identify using sequential letters2, since we do not care 
about the numerical values.  We can then describe the combinations of these characteristics with symbols of the form "Gpqr", where G 
is a letter denoting the rotational symmetry group and r denotes the ray angle.  Each symbol denotes an edge type.  All edges of an 
isotoxal polyhedron must of course be of the same type.  (We will occasionally omit the initial letter when the symmetry group is 
implied by context.) 
 
The edge types for each polyhedral rotational symmetry group are: 
 
 Cyclic:     Cnna 
 
 Dihedral:  Dnna,  Dn2a,  D22a,  D22b,  ... 
 
 Tetrahedral:  T33a,  T33'a,  T33'b,  T32a,  T32b,  T22a,  T22b 
 
 Octahedral:  O44a,  O44b,  
   O43a,  O43b,  
   O42a,  O42b,  O42c, 
   O33a,  O33b,  O33c,  
   O32a,  O32b,  O32c, 
   O22a,  O22b,  O22c,  O22d 
 
 Icosahedral:  I55a,  I55b,  I55c, 
   I53a,  I53b,  I53c,  I53d, 
   I52a,  I52b,  I52c,  I52d,  I52e, 
   I33a,  I33b,  I33c,  I33d,  I33e, 
   I32a,  I32b,  I32c,  I32d,  I32e,  I32f,  I32g, 
   I22a,  I22b,  I22c,  I22d,  I22e,  I22f,  I22g,  I22h 
 
For each of these, we note the number of q-fold rays at angle r from a given p-fold ray, and the number of p-fold rays at angle r from a 
given q-fold ray.  For example, for edge type O32b there are six 2-fold rays at the second smallest angle (b) from every 3-fold ray.  
This is the maximum valence that a vertex of that class can have in a polyhedron of that edge type.  We eliminate from further 
consideration any edge type for which either of the counts is less than 3, as that would result in divalent or univalent vertices.  Note 
that this eliminates the Cyclic and Dihedral groups entirely. 
 
The total number of possible edges is the product of the maximum valence and the number of rays of the order of rotation of the given 
class.  For most edge types, all of the possible edges must be present in a polyhedron of that type in order to preserve symmetry.  
There is an exception for types in which both of the maximum valences are even and at least 6.  For such types there is a possibility of 
enantiomorphic pairs using half the total possible edges.  This occurs for types I33b and I33c. 
 
For the remaining edge types, these data are shown in Table 2.1.  We will be most interested in the total number of face sides in the 
polyhedron, which is twice the total number of edges. 
 
In all cases, each vertex class must contain all possible vertices, that is, one on each k-fold ray for the relevant k.  Because of this, 
polyhedra of edge types for which p = q will have two vertices on each ray.  Thus, edges cross in pairs as in Figure 2.1a.  This is one 
of the most significant differences from vertex-transitive isotoxal polyhedra, which have but a single edge between any two rays. 
 

                                                
2 N. J. Bridge [Br74] described a similar identification. 
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Table 2.1:  Edge Types 
 

Group Edge Type Maximum Valence Number of Rays Total Edges 
  Class A Class B Class A Class B  
T 33a 3 3 4 4 12 
T 33'a 3 3 4 4 12 
T 22a 4 4 6 6 24 
       
O 44a 4 4 6 6 24 
O 43a 4 3 6 8 24 
O 43b 4 3 6 8 24 
O 33a 3 3 8 8 24 
O 33b 3 3 8 8 24 
O 32b 6 4 8 12 48 
O 22a 4 4 12 12 48 
O 22c 4 4 12 12 48 
       
I 55a 5 5 12 12 60 
I 55b 5 5 12 12 60 
I 53a 5 3 12 20 60 
I 53b 5 3 12 20 60 
I 53c 5 3 12 20 60 
I 53d 5 3 12 20 60 
I 52c 10 4 12 30 120 
       
I 33a 3 3 20 20 60 
I 33b 6 6 20 20 120 or 60 
I 33c 6 6 20 20 120 or 60 
I 33d 3 3 20 20 60 
I 32b 6 4 20 30 120 
I 32d 6 4 20 30 120 
I 32f 6 4 20 30 120 
       
I 22a 4 4 30 30 120 
I 22b 4 4 30 30 120 
I 22c 4 4 30 30 120 
I 22d 4 4 30 30 120 
I 22e 4 4 30 30 120 
I 22f 4 4 30 30 120 
I 22g 4 4 30 30 120 

 
 
 
 

  
a.  vertex-intransitive b.  vertex-transitive 

 
Figure 2.1:  Edge configurations in isotoxal polyhedra when p = q 
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3.  Face Types 
 
For a given plane P, let cP be the point of the plane nearest the center of symmetry of the given polyhedron.  For a face in that plane, 
the vertices of either class must lie on a circle that is centered on cP.  The edges connect vertices that lie alternately on two concentric 
(possibly coincident) circles.  The equality of the edge lengths implies that the vertices on each circle are regularly spaced and that the 
two sets of vertices are rotationally aligned to produce reflectional symmetry. 
 
 
Thus, the faces of a vertex-intransitive isotoxal polyhedron have borders that are themselves isotoxal.  This family of polygons seems 
to have received little attention in the literature, especially compared to the interest shown in isogonal ones.  Edmund Hess [He74] and 
Max Brückner [Br00] described their metrical properties in detail but did not touch upon the geometric alignments that characterize 
the subtypes we define.  The most extensive modern treatment appears to be that in which Branko Grünbaum displayed nearly every 
subtype of isotoxal 14-gon, but did not label or identify them [Gr94].  He presented them primarily as duals of types of isogonal 
polygons.  The notation used by Grünbaum and G. C. Shephard [GS86], oddly, halves the number of vertices. 
 
We use the notation "[m/d]" (or simply "[m]" when d = 1) to denote either a polygon having m edges and rotation number (or density) 
d or a face having such a polygon as its boundary.  This is similar to the "{m/d}" notation commonly used for regular polygons, with 
the difference that when the greatest common factor (m, d) = h is greater than 1 this refers to an m-gon rather than to a compound of h 
(m/h)-gons.  A face whose border is such a polygon is a surface that can be understood as made up of triangular patches, each defined 
by an edge and the center of the face, stitched together along their other sides.  Star-polygon faces have density greater than 1, with a 
branch point at the center of the face. 
 
When m = 4, one obtains a rhombus or square.  We refer to the latter as a "regular [4]" for consistency.  Table 3.1 shows the various 
types and subtypes of isotoxal faces for 6 <= m <= 10.  An aligned face has lines containing 3 or 4 non-consecutive vertices.  The 
overlapped [10/3] is a special case in which some edges partially overlap.  To clarify its structure, Table 3.1 includes a representation 
of it with its edges shifted slightly.  Each inner vertex is incident with two edges and also lies on two other edges that pass through the 
same location in space but are as distant from the vertex as are two layers of a Riemann surface.  We can think of no good reason to 
reject such an object as a face for polyhedra that are surfaces, even though the polyhedra that contain them can be difficult to 
distinguish visually from simpler ones.  Degenerate faces, on the other hand, have sets of three consecutive collinear vertices.  They 
are essentially m/2-gons, require divalent vertices, and will not be considered.  Appendix 2 has more details on the issues they raise. 
 
There are isotoxal faces for each combination of even m and d < m/2 for which (d, m/2) = 1.  For other combinations one cannot form 
isotoxal faces without retracing edges.  As m increases, more subtypes arise than are identified here. 
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Table 3.1:  Isotoxal Face Types and Subtypes 
 

Face 
Type Face Subtypes 

[6] 

    
inner degenerate outer regular 

[6/2] 

 

   

    

[8] 

    
inner degenerate outer regular 

[8/3] 

    
inner aligned outer regular 
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Table 3-1:  Isotoxal Face Types and Subtypes, continued 
 

Face 
Type Face Subtypes 

[10] 

   

 

inner aligned medial  

   

 

degenerate outer regular  

[10/2] 

   

 

inner degenerate outer  
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Table 3-1:  Isotoxal Face Types and Subtypes, continued 
 

Face 
Type Face Subtypes 

[10/3] 

   

 

inner overlapped overlapped with edges 
shifted to clarify structure 

 

    
medial aligned outer regular 

 
[10/4] 

   

 

inner aligned outer  
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4.  Identifying Faces 
 
We place the center of symmetry at the origin of ℝ3 and fix the rotation axes.  Some faces may contain the origin.  These central3 
faces lie in planes that contain entire rotation axes.  That makes their proportions arbitrary and leads to very different treatment in the 
enumeration. 
 
Every face has an orientation, defined as the outward-directed normal vector of its face plane.  This coincides with a ray from the 
origin through the center of the face.  For central faces, we choose one direction of the normal vector arbitrarily.  We assign the same 
orientation to the two vertex classes and to the face plane.  We show orientation vectors scaled to convenient triples, as the actual 
length is not relevant. 
 
The geometry of a non-central face and its vertices is completely determined by the geometry of the intersections of the rotation axes 
and the face plane.  This pattern is dependent on the position and orientation of the plane but not on its distance from the origin.  In 
particular, the two classes of vertices will be at radii that have a ratio determined by the two circles that contain the vertices.  The 
relevant radii are not those from the center of the face, but those from the center of symmetry of the polyhedron.  Two sets of faces are 
compatible, that is, can share edges and be part of the same polyhedron, if and only if they have the same ratio as well as the same 
edge type.  Central faces can exist at any ratio and are compatible with all other face sets of the same edge type. 
 
For any face, we define the radii ratio as the radius of the Class A vertices divided by the radius of the Class B vertices.  When p = q, 
we arbitrarily assign Class A to the set of vertices with the greater radius.  The radii cannot be equal in such cases or the two classes of 
vertices would coincide.  This makes all ratios for such edge types greater than 1 and simplifies the determination of compatible face 
sets. 
 
The possible face planes are those for which the pattern of intersection points includes at least two n-gonal configurations of k-sites 
that together define an isotoxal polygon centered at cP.  All of the points within each configuration must be on rays of the same order 
of rotation.  We refer to the n-gonal configurations themselves as "n-sets", where n is the number of k-sites in them.  We also 
parameterize them by a scaling factor to account for the radial degree of freedom in their placement and size. 
 
For non-central n-sets or when n > 2, an n-set is sufficient to define a face plane and we assign the plane's orientation to it.  For central 
2-sets there is no unique orientation.  Each such 2-set is a pair of k-sites on opposite rays of a rotation axis and is contained in every 
plane containing that axis. 
 
Our enumeration of possible faces in each symmetry group begins with an enumeration of n-sets.  For pairs of them that have the 
necessary alignment to define an isotoxal face, we say that they match.  Matching n-sets will have the same orientation and contain the 
same number of k-sites.  Their values of k may differ.  Central n-sets can only match other central ones.  Note than a central n-set for 
odd n can match itself, but it must do so at a different radius or vertices would coincide.  For central 2-sets, matching 2-sets will be 
pairs of k-sites on any axes perpendicular to the given one.  The resulting rhombi will have well-defined orientations (up to sign). 
 
 
For each of the Octahedral and Icosahedral symmetry groups, we proceed as follows: 
 

1) Identify central 2-sets and match perpendicular pairs of them.  These matches produce central rhombi. 
 

2) Identify the other n-sets. 
 

3) For each rotationally equivalent set of n-sets, select a representative one that has a canonical orientation. 
 

4) Identify matching pairs of n-sets, producing candidate face sets with the required symmetry. 
 

5) Identify single face sets and compatible pairs of face sets that have the required number of face sides. 
 

6) Determine those that close into surfaces and identify polyhedra and compounds from such combinations. 
 
 

                                                
3 Central faces are also called equatorial, but primarily in contexts where the vertices are on the polyhedron's circumsphere and an 
author is considering only the boundary polygon. 



 Edge-Transitive Polyhedra    10 

5.  Octahedral and Tetrahedral Symmetry 
 
We fix the Octahedral rotation axes as follows: 
 4-fold: (u, 0, 0), (0, u, 0), (0, 0, u) 
 3-fold: (u, u, u), (u, -u, -u), (-u, u, -u), (-u, -u, u) 
 2-fold: (u, u, 0), (u, -u, 0), (u, 0, u), (-u, 0, u), (0, u, u), (0, u, -u) 
where u is an arbitrary parameter that is constant within any given n-set.  Taking signs as shown or all as negated identifies a 
particular ray of an axis. 
 
The central 2-sets for k = 4 have 4-sites and 2-sites on their equators (i.e., the perpendicular bisecting planes), those for k = 3 have 2-
sites on their equators, and those for k = 2 have 4-sites, 3-sites, and 2-sites on their equators.  These matches produce rhombi with 
edge types 44a, 42b, 32b, and 22b.  Edge types 42b and 22b have been eliminated.  The 44a and 32b rhombi are included below in 
Table 5.3.  Their 2-sets are notated there as "centk".  The 2-sets and the rhombi they define are omitted from the following discussion 
of n-sets. 
 
 
n-sets 
 
One can readily find n-sets by inspection of a model of the Octahedral group on a sphere.  For a pair of equiradial k-sites at each ray 
angle, we examine the planes that contain that pair and identify simply-connected regular n-gons having that pair as a side.  The 
vertices of such an n-gon identify an n-set.  The n-sets are listed in Table 5.1.  We list only one n-set of each rotational symmetry 
orbit, choosing the ones with orientations in a given symmetry domain in order to facilitate the identification of matches.  We choose 
those with orientations within the solid angle defined by (1, 0, 0), (1, 1, 0), and (1, 1, 1). 
 
Matching n-sets must have the same orientation, value of n, and condition of being central or not.  Table 5.2 lists the n-sets grouped by 
these properties. 
 
 
n-set Pairs 
 
n-sets 14 and 19 have nothing to match.  Figure 5.1 shows planes perpendicular to each of the orientations of non-central potential 
faces.  One can readily identify pairs of matching n-sets from these figures. 
 
In these and later figures, 2-sites are identified by red dots, 3-sites by green circles, 4-sites by purple squares, and 5-sites by purple 
pentagons.  The lines on these diagrams show collinearity to illustrate the relative locations of the n-sets.  They are unrelated to 
potential edges of faces. 
 
Among central n-sets, 15 and 16 are on rays 45 degrees apart and 17 and 18 are on rays 60 degrees apart.  n-sets 15 and 16 match; they 
define arbitrary [8]s and [8/3]s.  When not regular, these exist as coplanar pairs that have the same or inverse radii ratio.  An example 
is shown in Figure 5.2.  n-sets 17 and 18 also match; they define arbitrary [6]s that also exist as coplanar pairs when not regular.  In 
addition, 17 and 18 each match themselves, having odd n.  This results in coplanar pairs of [6/2]s. 
 
The faces defined by n-set pairs {3, 4} and {5, 6} have radii ratio = 1 and p = q, so cannot appear in a vertex-intransitive isotoxal 
polyhedron with Octahedral symmetry.  The {3, 4} face set is applicable to Tetrahedral symmetry and will be considered below. 
 
Table 5.3 lists the pairs of matching n-sets, grouped in the same way as the n-sets in Table 5.2.  Each entry in the table corresponds to 
a symmetrical set of faces.  These are all the potential faces of vertex-intransitive isotoxal polyhedra having Octahedral or Tetrahedral 
symmetry.  This table includes the central rhombi identified above. 
 
We immediately disregard the pairs that are of eliminated edge types or that define degenerate faces. 
 
 
Compatible Faces 
 
Face sets that are compatible must have the same radii ratio as well as the same edge type.  Table 5.4 lists the remaining potential face 
sets grouped by edge type.  In addition to showing the radii ratio, this table shows the number of faces in each set.  Entries of the form 
"a or b" indicate coplanar pairs.  It may be possible for only one of each pair to exist in a polyhedron. 
 
We eliminate from further consideration all central face sets that are not compatible with any non-central ones.  Such sets are never 
sufficient to form a closed surface by themselves. 
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Face Combinations 
 
It remains only to check all compatible face sets, singly and in pairs, for each Edge Type and radii ratio.  As mentioned above, the 
faces of a set, taken together, must provide the correct number of sides.  If two sets of faces are present, both must provide the same 
number of sides.  Edge-transitivity will be preserved as long as there are no more than two face sets.  If one set is sufficient for 
closure, the result is a polyhedron that is face-transitive as well. 
 
We test for closure by direct inspection of virtual models of the faces.  By noting as well whether multiple surfaces result or there is 
only point connectivity at vertices, we identify any compounds as well as single polyhedra that are made up of these face sets. 
 
Table 5.5 shows the results for the remaining possible Edge Types.  We find three Octahedral vertex-intransitive isotoxal polyhedra, 
including two that are face-intransitive and were previously unknown.  They are described and briefly discussed below in Section 8. 
 
 
Tetrahedral Symmetry 
 
In reducing from the Octahedral symmetry group, 4-axes and 4-sites become 2-axes and 2-sites.  Four of the 3-axis rays and their 
associated 3-sites remain as such while their inversions become 3'-rays and 3'-sites.  The 2-axes and 2-sites are not applicable. 
 
We have seen that the only possible edge types are T33a, T33'a, and T22a.  The only faces identified using Octahedral elements that 
carry over are as follows: 
 

Central Orientation  n Id1 Id2 Face subtype Edge Type Radii Ratio 
 (1, 0, 0) 2 3 4 regular [4] O33a → T33'a 1 
     ✓ (1, 0, 0) 2 cent4 cent4 [4] O44a → T22a any 

 
The T22a faces are all central and do not close into a surface.  The T33'a faces close into a directed cube.  This, denoted T33'a_1, 
would be the only vertex-intransitive isotoxal polyhedron having only Tetrahedral symmetry if one considered the directionality of the 
edges to be significant.  We do not, for reasons outlined in Appendix 1.  Thus, this is an ordinary cube, with transitive vertices and 
Octahedral symmetry after all. 
 
 

   
Figure 5.1:  Intersections of rotation axes with non-central planes perpendicular to (1, 0, 0), (1, 1, 0), and (1, 1, 1), respectively.  One 
k-site in each n-set is labeled. 

 
Figure 5.2:  Coplanar pairs of irregular central faces. 
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Table 5.1:  Octahedral n-sets 
 

k Angle n Sites Central Orientation 
4 a 2 (u, 0, 0), (0, u, 0)  (1, 1, 0) 
4 a 3 (u, 0, 0), (0, u, 0), (0, 0, u)  (1, 1, 1) 
4 a 4 (0, u, 0), (0, 0, u), (0, -u, 0), (0, 0, -u)      ✓ (1, 0, 0) 
      
3 a 2 (u, u, u), (u, u, -u)  (1, 1, 0) 
3 a 4 (u, u, u), (u, u, -u), (u, -u, u), (u, -u, -u)  (1, 0, 0) 
3 b 2 (u, u, u), (u, -u, -u)  (1, 0, 0) 
3 b 2 (u, u, -u), (u, -u, u)  (1, 0, 0) 
3 b 3 (u, u, -u), (u, -u, u), (-u, u, u)  (1, 1, 1) 
       
2 a 2 (u, 0, u), (u, u, 0)  (2, 1, 1) 
2 a 3 (u, u, 0), (u, 0, u), (0, u, u)  (1, 1, 1) 
2 a 4 (u, 0, u), (u, u, 0), (u, 0, -u), (u, -u, 0)  (1, 0, 0) 
2 a 6 (u, 0, -u), (0, u, -u), (-u, u, 0), (-u, 0, u), (0, -u, u), (u, -u, 0)      ✓ (1, 1, 1) 
2 b 2 (u, 0, u), (u, 0, -u)  (1, 0, 0) 
2 b 2 (u, u, 0), (u, -u, 0)  (1, 0, 0) 
2 b 4 (0, u, u), (0, u, -u), (0, -u, -u), (0, -u, u)      ✓ (1, 0, 0) 
2 c 2 (0, u, u), (u, 0, -u)  (1, 1, 0) 
2 c 2 (0, u, -u), (u, 0, u)  (1, 1, 0) 
2 c 3 (0, u, -u), (-u, 0, u), (u, -u, 0)      ✓ (1, 1, 1) 
2 c 3 (0, -u, u), (u, 0, -u), (-u, u, 0)      ✓ (1, 1, 1) 

 
 
Table 5.2:  Octahedral n-sets grouped by centrality, orientation, and value of n 
 

Id Central Orientation n k Sites 
1  (1, 0, 0) 4 3 (u, u, u), (u, u, -u), (u, -u, u), (u, -u, -u) 
2  (1, 0, 0) 4 2 (u, 0, u), (u, u, 0), (u, 0, -u), (u, -u, 0) 
      
3  (1, 0, 0) 2 3 (u, u, u), (u, -u, -u) 
4  (1, 0, 0) 2 3 (u, u, -u), (u, -u, u) 
5  (1, 0, 0) 2 2 (u, 0, u), (u, 0, -u) 
6  (1, 0, 0) 2 2 (u, u, 0), (u, -u, 0) 
      
7  (1, 1, 0) 2 4 (u, 0, 0), (0, u, 0) 
8  (1, 1, 0) 2 3 (u, u, u), (u, u, -u) 
9  (1, 1, 0) 2 2 (0, u, +u), (u, 0, -u) 
10  (1, 1, 0) 2 2 (0, u, -u), (u, 0, +u) 
      
11  (1, 1, 1) 3 4 (u, 0, 0), (0, u, 0), (0, 0, u) 
12  (1, 1, 1) 3 3 (u, u, -u), (u, -u, u), (-u, u, u) 
13  (1, 1, 1) 3 2 (u, u, 0), (u, 0, u), (0, u, u) 
      
14  (2, 1, 1) 2 2 (u, 0, u), (u, u, 0) 
      
15      ✓ (1, 0, 0) 4 4 (0, u, 0), (0, 0, u), (0, -u, 0), (0, 0, -u) 
16      ✓ (1, 0, 0) 4 2 (0, u, u), (0, u, -u), (0, -u, -u), (0, -u, u) 
      
17      ✓ (1, 1, 1) 3 2 (0, +u, -u), (-u, 0, +u), (+u, -u, 0) 
18      ✓ (1, 1, 1) 3 2 (0, -u, +u), (+u, 0, -u), (-u, +u, 0) 
      
19      ✓ (1, 1, 1) 6 2 (u, 0, -u), (0, u, -u), (-u, u, 0), (-u, 0, u), (0, -u, u), (u, -u, 0) 
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Table 5.3:  Potential faces from matched Octahedral n-sets including central rhombi 
 

Central Orientation n Id1 Id2 Face Subtype Edge Type 
 (1, 0, 0) 4 1 2 degenerate [8] 32a 
 (1, 0, 0) 4 1 2 aligned [8/3] 32b 
       
 (1, 1, 0) 2 7 8 [4] 43a 
       
 (1, 1, 1) 3 11 12 degenerate [6] 43a 
 (1, 1, 1) 3 11 13 degenerate [6] 42a 
 (1, 1, 1) 3 12 13 [6/2] 32b 
       
     ✓ (1, 0, 0) 4 15 16 arbitrary [8] 42a 
     ✓ (1, 0, 0) 4 15 16 arbitrary [8/3] 42c 
       
     ✓ (1, 1, 1) 3 17 17 [6/2] 22c 
     ✓ (1, 1, 1) 3 18 18 [6/2] 22c 
     ✓ (1, 1, 1) 3 17 18 arbitrary [6] 22a 
       
     ✓ (1, 0, 0) 2 cent4 cent4 [4] 44a 
     ✓ (2, 1, 1) 2 cent3 cent2 [4] 32b 

 
 
 
Table 5.4:  Octahedral face sets by edge type 
 

Edge Type Radii Ratio Central Face Subtype Number of Faces 
44a any      ✓ [4] 3 or 6 
     
43a 2/√3  [4] 12 
     
32b √3/√2  aligned [8/3] 6 
32b √6  [6/2] 8 
32b any      ✓ [4] 12 
     
22a any      ✓ arbitrary [6] 4 or 8 
     
22c any      ✓ [6/2] 4 or 8 

 
 
Table 5.5:  Octahedral face combinations 
 

Edge 
Type 

Radii  
Ratio 

Face Sets Contributed 
Sides 

Required 
Sides 

Resulting 
Polyhedron 

43a 2/√3 12 [4]s 48 48 O43a_1 
      
32b √3/√2 6 aligned [8/3]s 48 96  
32b √3/√2 6 aligned [8/3]s,  12 central [4]s 96 96 O32b_1 
32b √6 8 [6/2]s 48 96  
32b √6 8 [6/2]s,  12 central [4]s 96 96 O32b_2 
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6.  Icosahedral Symmetry 
 
The argument here is exactly analogous to that used for Octahedral symmetry.  For the most part, the text in this section will describe 
only differences from the discussion in the previous section. 
 
 Let φ = (√5 + 1) / 2,   τ = (√5 - 1) / 2,   and λ = √(φ+2). 
 
We fix the rotation axes as follows: 
 5-fold: (u, τu, 0), (u, -τu, 0), (0, u, τu), (0, u, -τu), (τu, 0, u), (-τu, 0, u) 
 3-fold: (u, u, u), (u, -u, -u), (-u, u, -u), (-u, -u, u), 
  (φu, 0, τu), (φu, 0, -τu), (τu, φu, 0), (-τu, φu, 0), (0, τu, φu), (0, -τu, φu) 
 2-fold: (2u, 0, 0), (0, 2u, 0), (0, 0, 2u), 
  (φu, τu, u), (φu, -τu, u), (φu, τu, -u), (φu, -τu, -u), 
  (u, φu, τu), (u, φu, -τu), (-u, φu, τu), (-u, φu, -τu), 
  (τu, u, φu), (-τu, u, φu), (τu, -u, φu), (-τu, -u, φu) 
 
The central 2-sets for k = 5 have 2-sites on their equators, those for k = 3 have 2-sites on their equators, and those for k = 2 have 5-
sites, 3-sites, and 2-sites on their equators.  These matches produce rhombi with edge types 52c, 32d, and 22d, which are included 
below in Table 6.3.  Their 2-sets are notated there as "centk".  The 2-sets and the rhombi they define are omitted from the following 
discussion of n-sets. 
 
 
n-sets 
 
One can readily find n-sets by inspection of a model of the Icosahedral group on a sphere.  They are listed in Table 6.1.  For these, 
since all of the n-sets are centered on reflection planes, we choose representative n-sets with orientations on the x-y and x-z planes 
rather than in a single fundamental domain of the symmetry group.  This makes the coordinate lists simpler. 
 
Table 6.2 lists the n-sets grouped by matching criteria. 
 
 
n-set Pairs 
 
n-sets 12, 32, 35, 38, and 39 have nothing to match.  n-sets 1 and 2 are located in the plane perpendicular to the 5-axis (-τu, 0, u).  n-
set 1 consists of two adjacent vertices of a central regular decagon and n-set 2 consists of two adjacent vertices of a central regular 
decagram.  When projected onto the same potential face plane, they lie on the same line but would need to be perpendicular in order to 
match. 
 
Note that n-sets 13 and 14 are essentially the same as the matching n-sets 6 and 7 of Octahedral symmetry. 
 
Figures 6.1 through 6.34 show planes perpendicular to each of the remaining three orientations of non-central potential faces.  One can 
readily identify pairs of matching n-sets from these figures.  As in the Octahedral plane diagrams, the lines on these diagrams show 
collinearity to illustrate the relative locations of the n-sets.  Some lines are emphasized to highlight matching. 
 
Among central n-sets, 33 and 34 are on rays 60 degrees apart and 36 and 37 are on rays 36 degrees apart.  n-sets 33 and 34 match; they 
define arbitrary [6]s that exist as coplanar pairs when not regular.  Each also matches itself, which results in coplanar pairs of [6/2]s.  
n-sets 36 and 37 match; they define arbitrary [10]s and [10/3]s that exist as coplanar pairs when not regular.  Each also matches itself, 
which results in coplanar pairs of [10/2]s and [10/4]s. 
 
The faces defined by n-set pair {23, 24} have radii ratio = 1 and p = q, so cannot appear in a vertex-intransitive isotoxal polyhedron 
with Icosahedral symmetry.  (These faces form the vertex-transitive compound of 5 cubes.) 

                                                
4 The first two figures contain the complete stellation diagram of the Dodecahedron and most of that for the Icosahedron.  The 
stellation diagrams result from the intersections of faces planes.  Bisecting each of the resulting dihedral angles is a plane through the 
center that contains multiple rotation axes.  The intersections of those planes and one of the face planes are what produce the same 
lines on these diagrams. 
 
The third figure contains part of the stellation diagram of the rhombic triacontahedron.  The positive x coordinates of the k-sites shown 
form a geometric series with ratio equal to the Golden Ratio.  The same is true for the y coordinates. 
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Table 6.3 lists the pairs of matching n-sets, including the central rhombi identified above.  These correspond to all the potential faces 
of vertex-intransitive isotoxal polyhedra having Icosahedral symmetry.  The 13-14 rhombus with edge type 32b is the only non-central 
potential face type not perpendicular to an Icosahedral rotation axis.  It is also found in the Octahedral group with a 43a edge. 
 
As before, we immediately disregard the pairs that are of eliminated edge types or that define degenerate faces. 
 
 
Compatible Faces 
 
Table 6.4 lists the remaining potential face sets grouped by edge type and within that by increasing order of radii ratio.  As before, we 
eliminate from further consideration all central face sets that are not compatible with any non-central ones. 
 
 
Face Combinations 
 
Table 6.5 shows the results of the compatibility and closure tests for the remaining possible Edge Types. 
 
For edge types 33b and 33c, the face sets are not chiral and do not provide the geometry needed to close with only 120 sides (to form 
60 edges). 
 
For edge type 32b and ratio √3/2, when the faces are considered all together one finds that there are multiple surfaces.  This is a 
compound of 5 rhombic dodecahedra. 
 
We find 20 Icosahedral vertex-intransitive isotoxal polyhedra and compounds, most of which were previously unknown including 9 
that are face-intransitive.  Several have unusual structure, featuring partially-overlapping edges, and have the outward form of more 
familiar regular or uniform polyhedra.  All of these are described and briefly discussed below in Section 8. 

 

 
Figure 6.1:  Intersections of rotation axes with a non-central plane perpendicular to (φ, 0, τ).  One k-site in each triangular set is 
labeled.  Matching 3-sets are incident with a common line through the center. 
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Figure 6.2:  Intersections of rotation axes with a non-central plane perpendicular to (1, τ, 0).  One k-site in each pentagonal set is 
labeled.  All pairs of 5-sets match as they all are incident with a common line through the center. 
 

 
Figure 6.3:  Intersections of rotation axes with a non-central plane perpendicular to (1, 0, 0).  One k-site in each opposite pair is 
labeled.  Matching 2-sets lie on perpendicular lines through the center. 
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Table 6.1:  Icosahedral n-sets 
 

k Angle n Sites Central Orientation 
5 a 2 (u, ±τu, 0)  (1, 0, 0) 
5 a 3 (u, ±τu, 0), (τu, 0, u)  (φ, 0, τ) 
5 a 5 (u, -τu, 0), (τu, 0, ±u), (0, u, ±τu)  (1, τ, 0) 
5 b 2 (τu, 0, ±u)  (1, 0, 0) 
5 b 3 (τu, 0, -u), (0, ±u, τu)  (φ, 0, τ) 
      
3 a 2 (φu, 0, ±τu)  (1, 0, 0) 
3 a 5 (u, u, ±u), (φu, 0, ±τu), (τu, φu, 0)  (1, τ, 0) 
3 b 2 (u, u, u), (u, u, -u)  (1, 1, 0) 
3 b 3 (u, ±u, u), (φu, 0, -τu)  (φ, 0, τ) 
3 b 4 (u, ±u, ±u)  (1, 0, 0) 
3 b 5 (u, -u, ±u), (0, τu, ±φu), (-τu, φu, 0)  (1, τ, 0) 
3 c 2 (u, -u, -u), (u, +u, +u)  (1, 0, 0) 
3 c 2 (u, -u, +u), (u, +u, -u)  (1, 0, 0) 
3 c 3 (u, +u, -u), (0, +τu, φu), (τu, -φu, 0)  (φ, 0, τ) 
3 c 3 (u, -u, -u), (0, -τu, φu), (τu, +φu, 0)  (φ, 0, τ) 
3 d 2 (τu, ±φu, 0)  (1, 0, 0) 
      
2 a 2 (φu, ±τu, u)  (φ, 0, 1) 
2 a 3 (2u, 0, 0), (φu, ±τu, u)  (φ, 0, τ) 
2 a 5 (2u, 0, 0), (φu, τu, ±u), (u, φu, ±τu)  (1, τ, 0) 
2 a 10 (0, 0, ±2u), (-u, φu, ±τu), (u, -φu, ±τu),  (-τu, u, ±φu), (τu, -u, ±φu)      ✓ (1, τ, 0) 
2 b 2 (φu, τu, ±u)  (φ, τ, 0) 
2 b 5 (0, 2u, 0), (φu, -τu, ±u), (τu, u, ±φu)  (1, τ, 0) 
2 b 6 (0, ±2u, 0), (-τu, ±u, φu), (τu, ±u, -φu)      ✓ (φ, 0, τ) 
2 c 2 (φu, -τu, -u), (φu, +τu, +u)  (1, 0, 0) 
2 c 2 (φu, -τu, +u), (φu, +τu, -u)  (1, 0, 0) 
2 c 5 (0, 0, +2u), (-u, φu, +τu), (u, -φu, +τu), (-τu, u, -φu), (τu, -u, -φu)      ✓ (1, τ, 0) 
2 c 5 (0, 0, -2u), (-u, φu, -τu), (u, -φu, -τu), (-τu, u, +φu), (τu, -u, +φu)      ✓ (1, τ, 0) 
2 d 2 (2u, 0, 0), (0, 2u, 0)  (1, 1, 0) 
2 d 3 (τu, +u, φu), (u, -φu, τu), (φu, +τu, -u)  (φ, 0, τ) 
2 d 3 (τu, -u, φu), (u, +φu, τu), (φu, -τu, -u)  (φ, 0, τ) 
2 d 4 (0, ±2u, 0), (0, 0, ±2u)      ✓ (1, 0, 0) 
2 e 2 (u, ±φu, τu)  (φ, 0, 1) 
2 e 3 (0, 0, 2u), (u, ±φu, -τu)  (φ, 0, τ) 
2 f 2 (u, -φu, -τu), (u, +φu, +τu)  (1, 0, 0) 
2 f 2 (u, -φu, +τu), (u, +φu, -τu)  (1, 0, 0) 
2 f 3 (0, +2u, 0), (-τu, -u, φu), (τu, -u, -φu)      ✓ (φ, 0, τ) 
2 f 3 (0, -2u, 0), (-τu, +u, φu), (τu, +u, -φu)      ✓ (φ, 0, τ) 
2 g 2 (τu, -u, -φu), (τu, +u, +φu)  (1, 0, 0) 
2 g 2 (τu, -u, +φu), (τu, +u, -φu)  (1, 0, 0) 
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Table 6.2:  Icosahedral n-sets grouped by centrality, orientation, and value of n 
 

Id Central Orientation n k Sites 
1  (φ, 0, 1) 2 2 (φu, ±τu, u) 
2  (φ, 0, 1) 2 2 (u, ±φu, τu) 
      
3  (φ, 0, τ) 3 5 (u, ±τu, 0), (τu, 0, u) 
4  (φ, 0, τ) 3 5 (τu, 0, -u), (0, ±u, τu) 
5  (φ, 0, τ) 3 3 (u, ±u, u), (φu, 0, -τu) 
6  (φ, 0, τ) 3 3 (u, +u, -u), (0, +τu, φu), (τu, -φu, 0) 
7  (φ, 0, τ) 3 3 (u, -u, -u), (0, -τu, φu), (τu, +φu, 0) 
8  (φ, 0, τ) 3 2 (2u, 0, 0), (φu, ±τu, u) 
9  (φ, 0, τ) 3 2 (τu, +u, φu), (u, -φu, τu), (φu, +τu, -u) 
10  (φ, 0, τ) 3 2 (τu, -u, φu), (u, +φu, τu), (φu, -τu, -u) 
11  (φ, 0, τ) 3 2 (0, 0, 2u), (u, ±φu, -τu) 
      
12  (φ, τ, 0) 2 2 (φu, τu, ±u) 
      
13  (1, 1, 0) 2 3 (u, u, u), (u, u, -u) 
14  (1, 1, 0) 2 2 (2u, 0, 0), (0, 2u, 0) 
      
15  (1, τ, 0) 5 5 (u, -τu, 0), (τu, 0, ±u), (0, u, ±τu) 
16  (1, τ, 0) 5 3 (u, u, ±u), (φu, 0, ±τu), (τu, φu, 0) 
17  (1, τ, 0) 5 3 (u, -u, ±u), (0, τu, ±φu), (-τu, φu, 0) 
18  (1, τ, 0) 5 2 (2u, 0, 0), (φu, τu, ±u), (u, φu, ±τu) 
19  (1, τ, 0) 5 2 (0, 2u, 0), (φu, -τu, ±u), (τu, u, ±φu) 
      
20  (1, 0, 0) 2 5 (u, ±τu, 0) 
21  (1, 0, 0) 2 5 (τu, 0, ±u) 
22  (1, 0, 0) 2 3 (φu, 0, ±τu) 
23  (1, 0, 0) 2 3 (u, -u, -u), (u, +u, +u) 
24  (1, 0, 0) 2 3 (u, -u, +u), (u, +u, -u) 
25  (1, 0, 0) 2 3 (τu, ±φu, 0) 
26  (1, 0, 0) 2 2 (φu, -τu, -u), (φu, +τu, +u) 
27  (1, 0, 0) 2 2 (φu, -τu, +u), (φu, +τu, -u) 
28  (1, 0, 0) 2 2 (u, -φu, -τu), (u, +φu, +τu) 
29  (1, 0, 0) 2 2 (u, -φu, +τu), (u, +φu, -τu) 
30  (1, 0, 0) 2 2 (τu, -u, -φu), (τu, +u, +φu) 
31  (1, 0, 0) 2 2 (τu, -u, +φu), (τu, +u, -φu) 
      
32  (1, 0, 0) 4 3 (u, ±u, ±u) 
      
33      ✓ (φ, 0, τ) 3 2 (0, +2u, 0), (-τu, -u, φu), (τu, -u, -φu) 
34      ✓ (φ, 0, τ) 3 2 (0, -2u, 0), (-τu, +u, φu), (τu, +u, -φu) 
      
35      ✓ (φ, 0, τ) 6 2 (0, ±2u, 0), (-τu, ±u, φu), (τu, ±u, -φu) 
      
36      ✓ (1, τ, 0) 5 2 (0, 0, +2u), (-u, φu, +τu), (u, -φu, +τu), (-τu, u, -φu), (τu, -u, -φu) 
37      ✓ (1, τ, 0) 5 2 (0, 0, -2u), (-u, φu, -τu), (u, -φu, -τu), (-τu, u, +φu), (τu, -u, +φu) 
      
38      ✓ (1, τ, 0) 10 2 (0, 0, ±2u), (-u, φu, ±τu), (u, -φu, ±τu),  (-τu, u, ±φu), (τu, -u, ±φu) 
      
39      ✓ (1, 0, 0) 4 2 (0, ±2u, 0), (0, 0, ±2u) 
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Table 6.3:  Potential faces from matched Icosahedral n-sets including central rhombi 
 

Central Orientation n Id1 Id2 Face Subtype Edge Type 
 (φ, 0, τ) 3 3 4 inner [6] 55a 
    3 5 outer [6] 53a 
   3 8 degenerate [6] 52a 
   3 11 [6/2] 52c 
    4 5 [6/2] 53c 
   4 8 [6/2] 52c 
   4 11 degenerate [6] 52b 
   5 8 [6/2] 32b 
   5 11 inner [6] 32b 
   6 10 degenerate [6] 32b 
   7 9 degenerate [6] 32b 
   8 11 inner [6] 22b 
       
 (1, 1, 0) 2 13 14 [4] 32b 
       
 (1, τ, 0) 5 15 16 aligned [10] 53a 
   15 16 overlapped [10/3] 53b 
   15 17 aligned [10] 53a 
   15 17 overlapped [10/3] 53c 
   15 18 degenerate [10/2] 52b 
   15 18 aligned [10/4] 52c 
   15 19 degenerate [10] 52a 
   15 19 aligned [10/3] 52c 
   16 17 inner [10/2] 33b 
   16 17 inner [10/4] 33c 
   16 18 degenerate [10] 32a 
   16 18 aligned [10/3] 32b 
   16 19 outer [10/2] 32b 
   16 19 outer [10/4] 32d 
   17 18 inner [10] 32b 
   17 18 inner [10/3] 32d 
   17 19 degenerate [10/2] 32c 
   17 19 aligned [10/4] 32f 
   18 19 aligned [10] 22a 
   18 19 overlapped [10/3] 22c 
       
 (1, 0, 0) 2 20 21 [4] 55a 
   20 22 [4] 53a 
   21 25 [4] 53b 
   22 25 [4] 33b 
       
     ✓ (φ, 0, τ) 3 33 33 [6/2] 22f 
   34 34 [6/2] 22f 
   33 34 arbitrary [6] 22b 
       
     ✓ (1, τ, 0) 5 36 36 arbitrary [10/2] 22c 
   36 36 arbitrary [10/4] 22g 
   37 37 arbitrary [10/2] 22c 
   37 37 arbitrary [10/4] 22g 
   36 37 arbitrary [10] 22a 
   36 37 arbitrary [10/3] 22e 
       
     ✓ (φ, 0, 1) 2 cent5 cent2 arbitrary [4] 52c 
     ✓ (φ, τ, 0) 2 cent3 cent2 arbitrary [4] 32d 
     ✓ (1, 0, 0) 2 cent2 cent2 arbitrary [4] 22d 
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 Table 6.4:  Icosahedral face sets by edge type 
 

Edge Type Radii Ratio Decimal Ratio Central Face Subtype Number of Faces 
55a φ 1.61803  [4] 30 
55a φ³ 4.23607  inner [6] 20 
      
53a τ²λ/√3 0.41947  aligned [10] 12 
53a τ³λ³/√3 0.93796  outer [6] 20 
53a λ/√3 1.09819  [4] 30 
53a φλ/√3 1.77690  aligned [10] 12 
      
53b τλ/√3 0.67872  [4] 30 
53b φλ/√3 1.77690  overlapped [10/3] 12 
      
53c τ²λ/√3 0.41947  overlapped [10/3] 12 
53c λ³/√3 3.97327  [6/2] 20 
      
52c τ³λ 0.44903  [6/2] 20 
52c τλ 1.17557  aligned [10/3] 12 
52c λ 1.90211  aligned [10/4] 12 
52c φ²λ 4.97980  [6/2] 20 
52c any ---      ✓ [4] 30 
      
33b φ² 2.61803  [4] 30 
33b φ³ 4.23607  inner [10/2] 12 
      
33c φ³ 4.23607  inner [10/4] 12 
      
32b √3/λ² 0.47873  inner [6] 20 
32b √3τ² 0.66158  outer [10/2] 12 
32b √3/2 0.86603  [4] 60 
32b √3τ 1.07047  aligned [10/3] 12 
32b √3φ²/λ² 1.25332  [6/2] 20 
32b √3φ² 4.53457  inner [10] 12 
      
32d √3τ² 0.66158  outer [10/4] 12 
32d √3φ² 4.53457  inner [10/3] 12 
32d any ---      ✓ [4] 30 
      
32f √3φ 2.80252  aligned [10/4] 12 
      
22a φ 1.61803  aligned [10] 12 
22a any ---      ✓ arbitrary [10] 6 or 12 
      
22b φ² 2.61803  inner [6] 20 
22b any ---      ✓ arbitrary [6] 10 or 20 
      
22c φ 1.61803  overlapped [10/3] 12 
22c any ---      ✓ arbitrary [10/2] 6 or 12 
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Table 6.5:  Icosahedral face combinations 
 

Edge 
Type 

Radii  
Ratio 

Face Sets Contributed 
Sides 

Required 
Sides 

Resulting 
Polyhedron 

55a 1.61803 30 [4]s 120 120 I55a_1 
55a 4.23607 20 inner [6]s 120 120 I55a_2 
      
53a 0.41947 12 aligned [10]s 120 120 I53a_1 
53a 0.93796 20 outer [6]s 120 120 I53a_2 
53a 1.09819 30 [4]s 120 120 I53a_3 
53a 1.77690 12 aligned [10]s 120 120 I53a_4 
      
53b 0.67872 30 [4]s 120 120 I53b_1 
53b 1.77690 12 overlapped [10/3]s 120 120 I53b_2 
      
53c 0.41947 12 overlapped [10/3]s 120 120 I53c_1 
53c 3.97327 20 [6/2]s 120 120 I53c_2 
      
52c 0.44903 20 [6/2]s 120 240  
52c 0.44903 20 [6/2]s,  30 central [4]s 240 240 I52c_1 
52c 1.17557 12 aligned [10/3]s 120 240  
52c 1.17557 12 aligned [10/3]s,  30 central [4]s 240 240 I52c_2 
52c 1.90211 12 aligned [10/4]s 120 240  
52c 1.90211 12 aligned [10/4]s,  30 central [4]s 240 240 I52c_3 
52c 4.97980 20 [6/2]s 120 240  
52c 4.97980 20 [6/2]s,  30 central [4]s 240 240 I52c_4 
      
33b 2.61803 30 [4]s 120 240 or 120  
33b 4.23607 12 inner [10/2]s 120 240 or 120  
      
33c 4.23607 12 inner [10/4]s 120 240 or 120  
      
32b 0.47873 20 inner [6]s 120 240  
32b 0.66158 12 outer [10/2]s 120 240  
32b 0.86603 60 [4]s 240 240 I32b_1 
32b 1.07047 12 aligned [10/3]s 120 240  
32b 1.25332 20 [6/2]s 120 240  
32b 4.53457 12 inner [10]s 120 240  
      
32d 0.66158 12 outer [10/4]s 120 240  
32d 0.66158 12 outer [10/4]s,  30 central [4]s 240 240 I32d_1 
32d 4.53457 12 inner [10/3]s 120 240  
32d 4.53457 12 inner [10/3]s,  30 central [4]s 240 240 I32d_2 
      
32f 2.80252 12 aligned [10/4]s 120 240  
      
22a 1.61803 12 aligned [10]s 120 240  
22a 1.61803 12 aligned [10]s,  6 central medial [10]s 180 240  
22a 1.61803 12 aligned [10]s,  12 central medial [10]s 240 240 I22a_1 
      
22b 2.61803 20 inner [6]s 120 240  
22b 2.61803 20 inner [6]s,  10 central inner [6]s 180 240  
22b 2.61803 20 inner [6]s,  20 central inner [6]s 240 240 I22b_1 
      
22c 1.61803 12 overlapped [10/3]s 120 240  
22c 1.61803 12 overlapped [10/3]s,  6 central outer [10/2]s 180 240  
22c 1.61803 12 overlapped [10/3]s,  12 central outer [10/2]s 240 240 I22c_1 
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7.  Compounds 
 
A component polyhedron of an isotoxal compound must itself be isotoxal. 
 
Components can share vertices.  Compounds for which this occurs are bound.  Those that are made rigid thereby are fully bound.  
Others are partially bound and have rotational freedom.  Compounds in which the components do not share vertices are free.  The 
components of those merely overlap in the same region of space. 
 
Edges cannot be shared among component polyhedra of an isotoxal compound, as that would result in all the edges being incident 
with 4 faces.  Such duplication of all edges under the symmetry constraint leads only to mere superposition of components. 
 
The procedure described in the preceding sections finds all free vertex-intransitive isotoxal compounds.  It remains to find compounds 
that are bound or vertex-transitive (isogonal). 
 
We consider four categories of isotoxal compounds, depending on the vertex-transitivity of the compound and of its components. 
 
 
Isogonal Compounds of Isogonal Polyhedra 
 
Such components would be among those listed below in Table 8.3.  J. Skilling published a complete list of uniform compounds of 
uniform polyhedra [Sk76].  To find the isotoxal ones among them, we eliminate the ones with only prismatic symmetry as well as any 
for which the total number of edges among the components fails to divide the order of the symmetry group of the compound. 
 
This leaves the following: 
 

Skilling No. Count Components Symmetry 
4 2 tetrahedra Oh 
5 5 tetrahedra I 
6 10 tetrahedra Ih 
    
9 5 cubes Ih 
    
12 4 octahedra Oh 
15 10 octahedra Ih 
16 10 octahedra Ih 
17 5 octahedra Ih 
18 5 tetrahemihexahedra I 
    
59 5 cuboctahedra Ih 
60 5 cubohemioctahedra Ih 
61 5 octahemioctahedra Ih 

 
None has rotational freedom, which could affect the equivalence of edges. 
 
For those not clearly regular, it is straightforward to check virtual models for edge-transitivity.  All but the compounds of 4 and 10 
octahedra are isotoxal. 
 
 
Isogonal Compounds of Non-isogonal Polyhedra 
 
In order to form such a compound, the radii ratio of the component's faces must equal 1.  There are no such non-isogonal isotoxal 
polyhedra and therefore no compounds in this category. 
 
 
Non-isogonal Compounds of Isogonal Polyhedra 
 
The edge type of such a compound must have equal values of p and q.  For such types, edges cross in pairs as in Figure 2.1 and 
vertices are at two different radii.  But an isogonal component has a single edge between such rays and cospherical radii.  Thus 
isogonal components cannot form non-isogonal isotoxal compounds. 
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Non-isogonal Compounds of Non-isogonal Polyhedra 
 
For any compound in this category, the number of edges in a component must be less than and divide the total number of edges for the 
edge type of the compound.  All single polyhedra already have all possible edges for their type, as there are no enantiomorphic pairs.  
Thus a compound cannot be of the same type but must have a larger symmetry group that contains a compatible edge type. 
 
Based on edge counts, the only possibility for components is O43a_1.  As an Icosahedral compound this would have edge type I32b.  
It is the compound of 5 rhombic dodecahedra that we found in the course of enumerating Icosahedral polyhedra.  It is the only vertex-
intransitive isotoxal compound. 
 
While the rhombic dodecahedron has full Octahedral symmetry, it only has 24 edges.  For each pair of edges, there are two symmetry 
operations that map one to the other.  It is always the case that one of those operations is in the Th group, which is a subgroup of the 
compound's Ih group.  Thus, that polyhedron is still edge-transitive when 5 are combined with their 4-axes aligned with Icosahedral 2-
axes and their 3-axes aligned with Icosahedral 3-axes. 
 
 
Table 8.4 below lists all the isotoxal compounds. 
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8.  Discussion 
 
The vertex-transitive isotoxal polyhedra and the isotoxal compounds are all well known, but their isotoxal nature is rarely mentioned.  
The same is true of most of the vertex-intransitive, face-transitive ones as well. 
 
The following tables list various properties of the isotoxal polyhedra and compounds.  Columns "F", "E", and "V" contain the total 
numbers of faces, edges, and vertices, respectively.   Columns "F1" and "F2" contain the numbers of faces of types 1 and 2. 
 
 
Table 8.1:  Isotoxal Polyhedra that are neither Vertex-transitive nor Face-transitive.  All are novel. 
 

Polyhedron Face Type 1 Face Type 2 F1 F2 F E V Sides Genus 
O32b_1 aligned [8/3] [4]   6 12 18   48 20 1 12 
O32b_2 [6/2] [4]   8 12 20   48 20 2   5 
          
I52c_1 [6/2] [4] 20 30 50 120 42 1 30 
I52c_2 aligned [10/3] [4] 12 30 42 120 42 1 38 
I52c_3 aligned [10/4] [4] 12 30 42 120 42 1 38 
I52c_4 [6/2] [4] 20 30 50 120 42 1 30 
          
I32d_1 outer [10/4] [4] 12 30 42 120 50 1 30 
I32d_2 inner [10/3] [4] 12 30 42 120 50 1 30 
          
I22a_1 aligned [10] medial [10] 12 12 24 120 60 1 38 
          
I22b_1 inner [6] inner [6] 20 20 40 120 60 1 22 
          
I22c_1 overlapped [10/3] outer [10/2] 12 12 24 120 60 1 38 

 
 
Table 8.2:  Vertex-intransitive Isotoxal Polyhedra that are Face-transitive 
 

Polyhedron Face Type F E V Sides Genus Density Novel 
O43a_1 [4] 12 24 14 2 0   1  
         
I55a_1 [4] 30 60 24 2 4   3  
I55a_2 inner [6] 20 60 24 2 9   4  
         
I53a_1 aligned [10] 12 60 32 2 9   4 ✓ 
I53a_2 outer [6] 20 60 32 2 5   2  
I53a_3 [4] 30 60 32 2 0   1  
I53a_4 aligned [10] 12 60 32 2 9   2 ✓ 
         
I53b_1 [4] 30 60 32 2 0   7  
I53b_2 overlapped [10/3] 12 60 32 2 9   4 ✓ 
         
I53c_1 overlapped [10/3] 12 60 32 2 9 10 ✓ 
I53c_2 [6/2] 20 60 32 2 5   6  
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Table 8.3:  Vertex-Transitive Isotoxal Polyhedra.  The irregular ones are listed in groups that have the same edges. 
 

Vertex Configuration Face Type 1 Face Type 2 F1 F2 F E V Sides Genus Density 
(3, 3, 3) {3}    4    4   6   4 2   0 1 
(4, 4, 4) {4}    6    6 12   8 2   0 1 
(3, 3, 3, 3) {3}    8    8 12   6 2   0 1 
(5, 5, 5) {5}  12  12 30 20 2   0 1 
(3, 3, 3, 3, 3) {3}  20  20 30 12 2   0 1 
           
(5/2, 5/2, 5/2, 5/2, 5/2) {5/2}  12  12 30 12 2   4 3 
(5, 5, 5, 5, 5)/2 {5}  12  12 30 12 2   4 3 
(5/2, 5/2, 5/2) {5/2}  12  12 30 20 2   0 7 
(3, 3, 3, 3, 3)/2 {3}  20  20 30 12 2   0 7 
           
(3, ±4, -3, ±4) {3} {4}   4   3   7 12   6 1   1 -- 
           
(3, 4, 3, 4) {3} {4}   8   6 14 24 12 2   0 1 
(3, ±6, -3, ±6) {3} {6}   8   4 12 24 12 2   1 -- 
(4, ±6, -4, ±6) {4} {6}   6   4 10 24 12 1   4 -- 
           
(3, 5, 3, 5) {3} {5} 20 12 32 60 30 2   0 1 
(3, ±10, -3, ±10) {3} {10} 20   6 26 60 30 1   6 -- 
(5, ±10, -5, ±10) {5} {10} 12   6 18 60 30 1 14 -- 
           
(5/2, 5, 5/2, 5) {5/2} {5} 12 12 24 60 30 2   4 3 
(5/2, ±6, -5/2, ±6) {5/2} {6} 12 10 22 60 30 1 10 -- 
(5, ±6, -5, ±6) {5} {6} 12 10 22 60 30 1 10 -- 
           
(5/2, 3, 5/2, 3) {5/2} {3} 12 20 32 60 30 2   0 7 
(5/2, ±10/3, -5/2, ±10/3) {5/2} {10/3} 12   6 18 60 30 1 14 -- 
(3, ±10/3, -3, ±10/3) {3} {10/3} 20   6 26 60 30 1   6 -- 
           
(5/2, 3, 5/2, 3, 5/2, 3) {5/2} {3} 12 20 32 60 20 2   5 2 
(-5/2, 5, -5/2, 5, -5/2, 5) {5/2} {5} 12 12 24 60 20 2   9 4 
(3, 5, 3, 5, 3, 5)/2 {3} {5} 20 12 32 60 20 2   5 6 

 
 
Table 8.4:  Isotoxal Compounds 
 

ID Compound Face Type 1 Face Type 2 F1 F2 F E V Binding 
I32b_1 5 rhombic dodecahedra [4]  60  60 120 50 full 
           
Sk04 2 tetrahedra {3}    8    8   12   8 free 
Sk05 5 tetrahedra {3}  20  20   30 20 free 
Sk06 10 tetrahedra {3}  40  40   60 20 full 
Sk09 5 cubes {4}  30  30   60 20 full 
Sk17 5 octahedra {3}  40  40   60 30 free 
          
Sk18 5 tetrahemihexahedra {3} {4} 20 15 35   60 30 free 
Sk59 5 cuboctahedra {3} {4} 40 30 70 120 60 free 
Sk60 5 cubohemioctahedra {4} {6} 30 20 50 120 60 free 
Sk61 5 octahemioctahedra {3} {6} 40 20 60 120 60 free 

 
 
The remainder of this section describes the vertex-intransitive polyhedra listed above. 
 
The static images supplied here cannot do justice to the interior structure of most of the polyhedra listed here.  For full effect, one 
needs virtual models of them with transparent faces and full navigation all the way through.  This is a consequence of the fact that we 
are stuck in 3-dimensional space.  Just as A Square of Flatland cannot perceive star polygons without seeing transparent ones and 
having a good imagination, we have difficulty seeing the true beauty of these objects lacking a view from a fourth dimension. 
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Face-Intransitive Individual Polyhedra 
 
These are the ones that many authors have claimed are provably non-existent.  All have central faces and all but one are non-
orientable. 
 
 
The first two have central faces that are not quite parallel to those of the dual of a (3, 4, 4, 4), but are perpendicular to the radii of 
midpoints of central {6}s that the symmetry group defines. 
 
 
O32b_1:  Cubohemiicositetrahedron 

 

Faces: 

  
This fits snugly inside a cube.  There are several Uniform polyhedra in which pairs of non-adjacent faces share 2 vertices.  In this one, 
some such pairs share three vertices.  This is only possible with aligned faces, not regular ones. 
 
 
O32b_2:  Octahemiicositetrahedron 

 

Faces: 

  
This fits snugly inside a Stella Octangula.  Many pairs of non-adjacent faces share two vertices.  The Class B (2-fold) vertices are in 
the valleys formed by interpenetrating [6/2]s.  This is the only face-intransitive vertex-intransitive isotoxal polyhedron that is 
orientable.  Its density is not well defined; a line through the center has 12, 14, 16, or 18 intersections with the surface depending on 
the orientation that is chosen. 
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The next four have central faces that are not quite parallel to those of the dual of a (3, 4, 5, 4), but are perpendicular to the radii of 
midpoints of central {10}s that the symmetry group defines. 
 
 
I52c_1:  Small Hexagrammic Hemihexecontahedron 

 

Faces: 

  
The Class A (5-fold) vertices are at the bottom of star-shaped valleys.  Pairs of non-adjacent faces share two of these vertices. 
 
 
I52c_2:  Small 3-Decagrammic Hemihexecontahedron 

 

Faces: 

  
This fits snugly inside a Great Dodecahedron.  Some pairs of non-adjacent faces share three vertices. 
 
 
I52c_3:  Great 4-Decagrammic Hemihexecontahedron 

 

Faces: 

  
This fits snugly inside a Small Stellated Dodecahedron.  The Class B (2-fold) vertices are in the valleys formed by interpenetrating 
[10/4]s.  Some pairs of non-adjacent faces share three vertices. 
 
 
I52c_4:  Great Hexagrammic Hemihexecontahedron 

 

Faces: 

  
This fits snugly inside a Great Triambic Icosahedron.  The Class B (2-fold) vertices are in the valleys formed by interpenetrating 
[6/2]s, in the centers of canyons.  Some pairs of non-adjacent faces share two vertices. 
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The next two have central faces that are perpendicular to the radii of midpoints of central {6}s.  Thus the hexecontahedron of which 
these are "hemi" forms is a different one than for the I52c polyhedra. 
 
 
I32d_1:  Small 4-Decagrammic Hemihexecontahedron 

 

Faces: 

  
The Class A (3-fold) vertices are at the bottom of star-shaped valleys.  Pairs of non-adjacent faces share two of these vertices. 
 
 
I32d_2:  Great 3-Decagrammic Hemihexecontahedron 

 

Faces: 

  
This fits snugly inside a Great Stellated Dodecahedron.  The Class B (2-fold) vertices are well within the outer surface layer.  Pairs of 
non-adjacent faces share two Class A vertices. 
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The following three have central faces that are in the same planes as those of the uniform "...hemidodecahedra" and 
"...hemiicosahedra" but exist as coplanar pairs. 
 
 
I22a_1:  Decagonic Dihemidodecahedron 

 

Faces: 

  
This surface coincides with that of a (5/2, ±10/3, -5/2, ±10/3).  Inner vertices sit at the bases of the tall spires. 
 
 
I22b_1:  Hexagonic Dihemiicosahedron 

 

Faces: 

  
Inner vertices sit at the bases of the tall spires. 
 
 
I22c_1:  Decagrammic Dihemidodecahedron 

 

Faces: 

  
This surface also coincides with that of a (5/2, ±10/3, -5/2, ±10/3).  Inner vertices coincide with non-vertex edge crossings and sit at 
the bases of the tall spires. 
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Face-Transitive Individual Polyhedra 
 
Four of these bear superficial resemblance to regular star polyhedra, but they have significant topological differences.  The others are 
quite well known. 
 
 
O43a_1:  Rhombic Dodecahedron 

 

Face: 

  
Well known.  This is often claimed to be one of only two isotoxal polyhedra that are not vertex-transitive. 
 
 
I55a_1:  Medial Rhombic Triacontahedron 

  

Face: 

  
A well-known stellation of the rhombic triacontahedron.  Figure 6-3 shows these faces (defined by n-sets 20 and 21) in relation to 
those of the rhombic triacontahedron (n-sets 20 and 22). 
 
 
I55a_2:  Medial Triambic Icosahedron 

  

Face: 

  
A stellation of the icosahedron.  This has the outward appearance of Coxeter and DuVal's De2f2 [Co82], but is a surface with internal 
structure. 
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I53a_1:  [Proper] Great Stellated Dodecahedron 

  

Face: 

  
This is a form of the final stellation of the dodecahedron, one that properly corresponds to the notion of extending a face of the base 
polyhedron.  The more familiar Kepler-Poinsot form has a branch point in the center of each face.  Adjacent faces share 2 collinear 
(but non-adjacent) edges. 
 
 
I53a_2:  Small Triambic Icosahedron 

  

Face: 

  
A stellation of the icosahedron.  This has the outward appearance of Coxeter and DuVal's B [Co82], but is a surface with internal 
structure. 
 
 
I53a_3:  Rhombic Triacontahedron 

  

Face: 

 
Well known.  This is often claimed to be one of only two isotoxal polyhedra that are not vertex-transitive. 
 
 
I53a_4:  [Proper] Small Stellated Dodecahedron 

  

Face: 

 
This is a form of the first stellation of the dodecahedron, one that properly corresponds to the notion of extending a face of the base 
polyhedron.  The more familiar Kepler-Poinsot form has a branch point in the center of each face.  Adjacent faces share 2 collinear 
(but non-adjacent) edges. 
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I53b_1:  Great Rhombic Triacontahedron 

  

Face: 

 
A well-known stellation of the Rhombic Triacontahedron.  Figure 6-3 shows these faces (defined by n-sets 21 and 25) in relation to 
those of the rhombic triacontahedron (n-sets 20 and 22). 
 
 
I53b_2:  Overlapped Small Stellated Dodecahedron 

  

Face: 

 
A new form of the first stellation of the dodecahedron, having faces of density 3.  Perhaps the term "tristellated" could be applied?  
Adjacent faces share 2 collinear (partially overlapping but non-adjacent) edges. 
 
 
I53c_1:  Overlapped Great Stellated Dodecahedron 

  

Face: 

 
A new form of the final stellation of the dodecahedron, having faces of density 3.  Perhaps the term "tristellated" could be applied?  
Adjacent faces share 2 collinear (partially overlapping but non-adjacent) edges. 
 
 
I53c_2:  Great Triambic Icosahedron 

  

Face: 

 
A stellation of the icosahedron.  This also has the outward appearance of Coxeter and DuVal's De2f2 [Co82], but is a surface with 
internal structure and faces of density 2. 
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Appendix 1:  On Directed Edges 
 
In Section 5 we considered and dismissed T33'a_1, a directed cube of Tetrahedral symmetry.  Allowing such decorations and non-
geometrical, non-topological aspects admits only one other possibility.  Due to its even valence, the octahedron can also be viewed as 
a "tetratetrahedron", with directed edges or alternating colors of faces.  That is both edge- and vertex-transitive. 
 
The directed-edge polyhedra can be obtained by removing the edge-reversing elements from the symmetry group of another 
polyhedron.  The direction assigned to the edges is arbitrary, however, and can be reversed as part of a new symmetry operation. Thus, 
each of these actually has the full Octahedral symmetry of the original non-directed polyhedron; the directionality ends up adding 
nothing new. 
 
In the case of T33'a_1, this is so because the choice of which set of rays to designate as 3 and which as 3' is arbitrary to begin with.  
When the radii are equal, the geometric distinction vanishes.  A cube with a pattern would still have some features to distinguish the 
two sets as the vertex neighborhoods would be mirror images, but the underlying polyhedron ends up with eight indistinguishable 
vertices and insufficient justification for its own identity. 
 
Both of the above can be assembled into compounds of 5 components each.  As Skilling points out [Sk76], those compounds only use 
tetrahedral symmetry of the component polyhedra.  This eliminates the symmetry operations that reverse the orientation of the edges, 
so those compounds already essentially have directed edges.  These add nothing new either. 
 
Finally, face-intransitive polyhedra can all be considered as having a direction to their edges without changing anything about them. 
 
Thus, we conclude that the directed edges do not add anything of significance. 
 
 
 
Appendix 2:  On Degenerate Faces 
 
In the enumeration we rejected degenerate faces from consideration.  It is worth noting what would result if we allowed them and their 
necessarily divalent vertices.  Their inclusion would essentially produce the 9 regular polyhedra, the compounds of 2, 5, and 10 
tetrahedra, and the tetrahemihexahedron, as shown below.  All of these would have their edges bisected by an additional divalent 
vertex.  No additional surface structure or geometry would be obtained; the divalent vertices add nothing of interest. 
 
In general, such vertices are not well defined as they could be placed anywhere on an edge without contributing anything to the 
geometry or topology.  Any number of them could be added, leading to the entire edge being made up of "vertices". 
 
For these reasons we do not accept adjacent collinear edges. 
 
 
Table A.1:  Polyhedra and compounds resulting from the acceptance of degenerate faces. 
 

Edge Type Degenerate n-gon(s) Defining n-set Pair(s) Resulting Polyhedron or Compound 
O43a 8 [6]s {11,12} Stella Octangula 
O43a 4 [6]s {11,12} tetrahedron 
O42a 8 [6]s {11,13} octahedron 
O42a 4 [6]s and 3 central [8]s {11,13} and {15,16} tetrahemihexahedron 
O32a 6 [8]s {1,2} cube 
    
I52a 20 [6]s {3,8} icosahedron 
I52a 12 [10]s {15,19} great dodecahedron 
I52b 20 [6]s {4,11} great icosahedron 
I52b 12 [10/2]s {15,18} small stellated dodecahedron 
I32a 12 [10]s {16,18} dodecahedron 
I32b 20 [6]s {6,10} or {7,9}  5 tetrahedra 
I32b 40 [6]s both {6,10} and {7,9} 10 tetrahedra 
I32c 12 [10/2]s {17,19} great stellated dodecahedron 
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